Skip to contents

Create prediction model

Usage

create_model_prediction(target_test_df, model_fit)

Arguments

target_test_df

A dataframe with columns relevant to the regression model, i.e., target variable and predictors

model_fit

A "workflow" class object generated by the create_fit function

Value

A dataframe with predicted values appended to target_test_df

Examples

train_df <- target_df(mtcars[1:16, ], 'gear', c("am", "vs"))
test_df <- target_df(mtcars[17:32, ], 'gear', c("am", "vs"))
x_recipe <- create_recipe(train_df, target_variable="gear")
x_spec_list <- create_spec_kmin(train_df, model_recipe=x_recipe, method="lm", target_variable="gear")
x_spec <- get_list_item(x_spec_list, n=1)
x_fit <- create_fit(x_recipe, x_spec, train_df)
create_model_prediction(test_df, x_fit )
#>                   gear am vs    .pred
#> Chrysler Imperial    3  0  0 3.052632
#> Fiat 128             4  1  1 4.368421
#> Honda Civic          4  1  1 4.368421
#> Toyota Corolla       4  1  1 4.368421
#> Toyota Corona        3  0  1 3.605263
#> Dodge Challenger     3  0  0 3.052632
#> AMC Javelin          3  0  0 3.052632
#> Camaro Z28           3  0  0 3.052632
#> Pontiac Firebird     3  0  0 3.052632
#> Fiat X1-9            4  1  1 4.368421
#> Porsche 914-2        5  1  0 3.815789
#> Lotus Europa         5  1  1 4.368421
#> Ford Pantera L       5  1  0 3.815789
#> Ferrari Dino         5  1  0 3.815789
#> Maserati Bora        5  1  0 3.815789
#> Volvo 142E           4  1  1 4.368421